DATA STRUCTURE

All Notes Are Verified by NPTL and Published
By

WWW.ASKTOHOW.COM

IIT Guwahati C.E.0 of ASKTOHOW

NPTL Deepak

~ The word algorism, came from the 9" century Persian mathematician "Abu Abdullah Muhammad bin Musa
al-Khwarizmi" , which means the method of doing arithmetic using Indo-Arabic decimal system. It is also the
root of the word "algorithm” .

o An algorithm is a well defined computational method that takes some value(s) as input and produce some
value(s) as output. In other words, an algorithm is a sequence of computational steps that transforms input(s)
into output(s).

o An algorithm is correct if for every input, it halts with correct output. A correct algorithm solves the given
problem, where as an incorrect algorithm might not halt at all on some input instance, or it might halt with
other than designed answer.

o Each algorithm must have

Specification: Description of the computational procedure.
Pre-conditions: The condition(s) on input.

Body of the Algorithm: A sequence of clear and unambiguous instructions.
Post-conditions: The condition(s) on output.

m Algorithms are written in pseudo code that resembles programming languages like C and Pascal.
m Consider a simple algorithm for finding the factorial of n.

Algorithm Factorial (n)

Step 1: FACT = 1

Step 2: for: 4 /= 1 osn do
Step 3: FACT = FACT * i
Step 4: print FACT

Specification: Computes n!.

Pre-condition: n>=0

Post-condition: FACT = n!

For better understanding conditions can also be defined after any statement, to specify values in particular
variables.

Pre-condition and post-condition can also be defined for loop, to define conditions satisfied before starting and
after completion of loop respectively.

What is remain true before execution of the it iteration of a loop is called "loop invariant”.
These conditions are useful during debugging proces of algorithms implementation.
Moreover, these conditions can also be used for giving correctness proof.

Now, we take a more complex problem called sorting.

Problem Definition: Sort given n numbers by non-descending order.

There are many sorting algorithm. Insertion sort is a simple algorithm.

Insertion Sort: We can assume up fo first number is sorted. Thensortup 79 43 39 58 13
to two numbers. Next, sort up to three numbers. This process continue T |

till we sort all n numbers. 43 79 39 58 13
= Consider the following example of five integer: T |
79 43 39 58 13 : Up to first number, 79, is sorted. 39 43 79 58 13
43 79 39 58 13 : Sorted up to two numbers. fA—
39 43 79 58 13 : Sorted up to three numbers. 39 43 58 79 13
39 43 58 79 13 : Sorted up to four numbers. T |

13 3943 58 79 : Sorted all numbers.

= That is, if first (i-1) numbers are sorted then insert it number into its
correct position. This can be done by shifting numbers right one

number at a time il a position for it number is found. An Applet Demonstrating Insertion
= That is, shift number at (i-1)I" position to i position, number in (i-2) Sort
position to (i-1)I" position, and so on, till we find a correct position for the

number in i position. This method is depicted in the figure on right
side.

13 39 43 58 79

n The algorithmic description of insertion sort is given below.

Algorithm Insertion Sort (al[n])

Slep1: For 1 =¥ =0 nodo

Step2: current num = a[i]

Step 3:
§i=
Step 4:
while ((j >1) and (a[j-1] > current num)) do
Step 5:
alj]l = alj-1]
Step 6:

i = §-1

Step7: aljl = current num

n More about sorting algorithms are discussed in the modules 5 and 10.

Execution time of an algorithm depends on numbers of instruction executed.
Consider the following algorithm fragment:

for & =3 T # 4o

sum = sum + 1 ;

The for loop executed n+1 times for i values 1,2,....... n, n+1. Each instruction in the body of the loop is
executed once for each value of i = 1,2,......, n. So number of steps executed is 2n+1.
Consider another algorithm fragment:

for 1 =31 to & do
for 53 =31 o ndb
k= 1l

From prevoius example, number of instruction executed in the inner loop is 2» +1, which is the body of outer
loop.
Total number of instruction executed is

= n+1+n(2n+1)

=2x2° +2n+1

® To measure the time complexity in absolute time unit has the following problems

1. The time required for an algorithm depends on number of instructions executed, which is a complex
polynomial.

2. The execution time of an instruction depends on computer's power. Since, different computers take
different amount of time for the same instruction.

3. Different types of instructions take different amount of time on same computer.

= Complexity analysis technique abstracts away these machine dependent factors . In this approach, we
assume all instruction takes constant amount of time for execution.

= Asymptotic bounds as polynomials are used as a measure of the estimation of the number of instructions to
be executed by the algorithm . Three main types of asymptotic order notations are used in practice:

@ - notation : For a given function g(n), 8(g(n)) is defined as

8(g(n)) = JS(n): thereexiste, > 0,c, 20 andnye N
gl such that 0 <e,g(n) £ f(n) Scyg(n), forall 2 2 2

In other words, a function f(») is said to belong to 8(g(n}), if there exists positive constants <, and ¢, such
that ¢;g(») < f(n) Le,g(n) for sufficiently large value of n. For example, »#(x —1) € O(»*). This is because

we can find constants ¢, =-§ and c, =1 such that %n’ £ ait=1) Cn forall »zz .

. O - notation : For a given function g(»),O(g(»)) is defined as

O(g () = F(n) there exists ¢ >0, and nye N
gin such that 0L f(n) Lcg(n), for all n 2 n,

Forexample, 2x* + 5z + 6 € O(x®) as 2x° + 5n + 6 < 6(x*) forall » = 2

1. potation: This notation provides asymptotic lower bound. For a given gi»), C2(g(»))is defined as

F(n) there exisis ¢ >0, and nye N }

2(g()) ={ such that 0 Scg(n) £ f(n), for all n 2 n

For example, »* = <2{»*) because ,* > »*, forall » =0

Step 1: The for loop executed n times, for /i values from 2, 3,n+1
Step 2, 3, and 7: Each executed once for each iteration of the for loop. That is, each n-1 times.
Step 4: The while loop is executed at most jtimes, fori=2, 3,, n. Thatis, #x{(n+1)/2-1.

step 5 and 6: Each instruction executed /-1 times, for each i. Hence, (x#-1) * » /£ for each instruction.
Total number of instruction executed in the worst case is 5 + 4; — 4 . Hence the time complexity of the
algorithm is in &(»*) .

Similarly, we can analyze space required for the algorithm also. The Insertion sort algorithm has to store all n
inputs and using three more variables. So, the space complexity of the algorithm is in &(x) .

o Another way of finding number of instruction executed is by recursive equation. Let T(n) be the time required to

sort n numbers. T{n) can be expressed as a sum of T(n-1) and the time required to insert nth element in the sorted
array of n-1 element.

n The time required to insert an element in sorted array of n-1 elements takes cn steps, where ¢ is a positive
constant. This is because to insert n'" element, in worst case, we have to shift all n-1 elements one after other.

See the following figure.

79 43 39 58 13
<

“r43 79 39 58 13
l

39 43 79 58 13
<

39 43 58 79 13
|

..1\.

13 39 43 58 79

® Hence, the recurrence relation for Insertion sort is

Tin) = Tin-1) + en. 3F 7 =2

= LifEn=1

m There are three main approach to solve recurrence relations. They are substitution, iterative and master
theorem methods. In this notes we discuss iterative approach only. For other methods see Algorithms by
Cormen et al.

m |terative Method:

=:'TH¥n-1} T+ &n
T{n)

=t 23 <k pilin=lE R en
=pEne= SF S22y F St F on

] [R SR e e e e e

10 ik S S

ol i . R S B

c (n (n+tl)/2)

e nlnt e nf2

O{n*)

+ el{n=1) -+ cn

............. =23 4+ cln=1)y % @n

............. + n=2 + =1 +:n)

Consider another recurrence:

T {11}
==l) IfTm =1

= 2T (n/2) + O(n) if w21

In the above recurrence relation O(1) means a constant. So we can replace with some constant c4.

Similarly,O(n) means a function of order n. So we can replace with C-n.Hence, the recurrence can be
rewritten as

T (n) =51 TFns=]

o RS) Oon AE B3 g

Solution by Iterative method:

T (n) = P o+ Can

== 2¢{ 28/ 4 + Can/2) + Can
<= 2T (p/2%) + Czn + Can

<= o¢ (2 T{mfzs} + szfgzj + Can + Con

<= 93T (n/2%) + Can + Can + Con

= ST/t 2 B T

m Assume j; = 2 for some value of i.Thatis, i =logn

T
o = nT(l) + C sn*log{n)

= C yn + C sn*log(n)

= Q{n*Yogin))

m If p=? for some i, consideri = [(log H)]

T (n1)
< 2nT(l) + can*login)

= 2¢in + can*log(n)

= O{n*log(n))

1. Given an array of n integers, write an algorithm to find the smallest element. Find number of instruction
executed by your algorithm. What are the time and space complexities?

2. Wirite a algorithm to find the median of n numbers. Find number of instruction executed by your algorithm.
What are the time and space complexities?

3. Write a C program for the problem 1.

4. Write a C program for the problem 2.

9. Solve the following recurrence relations. Assume T(1) = O(1)

1. T(n) =T(n-2) +cn

2.T(n)=2T(n/2) + c n"2

3. T(n) =2T(n/2) + c n"3

4. T(n) =4 T(n/4) + O(n)

5. T(n) =4T(n2)+cn

6. T(n) = T(n/2) + O(1)

7.T(n) =2T(nl2) + nlogn

8. T(n) =T(n-1)+ 1/n

9. T(n) =T(n2) +logn
10. T(n) T(,j_)+ 1

